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In this paper, we construct a second order fast sweeping method with a discontinuous
Galerkin (DG) local solver for computing viscosity solutions of a class of static Hamilton-
Jacobi equations, namely the Eikonal equations. Our piecewise linear DG local solver is
built on a DG method developed recently [Y. Cheng, C.-W. Shu, A discontinuous Galerkin
finite element method for directly solving the Hamilton-Jacobi equations, Journal of Com-
putational Physics 223 (2007) 398-415] for the time-dependent Hamilton-Jacobi equa-
tions. The causality property of Eikonal equations is incorporated into the design of this
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solver. The resulting local nonlinear system in the Gauss-Seidel iterations is a simple qua-
dratic system and can be solved explicitly. The compactness of the DG method and the fast
sweeping strategy lead to fast convergence of the new scheme for Eikonal equations.
Extensive numerical examples verify efficiency, convergence and second order accuracy
of the proposed method.

Published by Elsevier Inc.

1. Introduction

In this paper, we develop a second order fast sweeping method for numerically solving an important class of static Ham-
ilton-Jacobi (H-]) equations, namely the Eikonal equations

IVex)| =f(x), xeQ\T, (1.1)
ox)=gx), xelcCQ, (1.2)

where Q belongs to R? with I" as its subset, e.g., the boundary, and 0 < ¢ < f(x) < C < oo for some positive ¢, C and f{x) and g(x)
are Lipschitz continuous. Such equations appear in many applications, such as optimal control, differential games, level set
method, image processing, computer vision, and geometric optics.

Since the boundary value problems (1.1), (1.2) are nonlinear first order partial differential equations, we may apply the
classical method of characteristics to solve these equations in phase space; namely, consider the gradient components as
independent variables and solve ODE systems to follow the propagation of characteristics. Although the characteristics
may never intersect in phase space, their projection into physical space may intersect so that the solution in physical space
is not uniquely defined at these intersections. By mimicking the entropy condition for hyperbolic conservation laws to single
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out a physically relevant solution, Crandall and Lions [16] introduced the concept of viscosity solutions for H-] equations so
that a unique global weak solution can be defined for such first order nonlinear equations. Moreover, monotone finite dif-
ference schemes are developed to compute such viscosity solutions stably.

There are mainly two classes of numerical methods for solving static H-] equations. The first class of numerical methods
is based on reformulating the equations into suitable time-dependent problems. Osher [32] provides a natural link between
static and time-dependent H-] equations by using the level-set idea and thus raising the problem one-dimensional higher. In
the control framework, a semi-Lagrangian scheme is obtained for H-] equations by discretizing in time the dynamic pro-
gramming principle [19,20]. Another approach to obtain a “time” dependent H-J equation from the static H-] equation is
using the so called paraxial formulation in which a preferred spatial direction is assumed in the characteristic propagation
[21,17,29,36,37]. High order numerical schemes are well developed for the time-dependent H-] equation on structured and
unstructured meshes [34,25,51,24,33,7,26,31,35,1,3,4,6,8]; see a recent review on high order numerical methods for time-
dependent H-] equations by Shu [46]. Due to the finite speed of propagation and the CFL condition for the discrete time step
size, the number of time steps has to be of the same order as that for one of the spatial dimensions so that the solution con-
verges in the entire domain.

The other class of numerical methods for static H-] equations is to treat the problem as a stationary boundary value prob-
lem: discretize the problem into a system of nonlinear equations and design an efficient numerical algorithm to solve the
system. Among such methods are the fast marching method and the fast sweeping method. The fast marching method
[48,43,22,44,45] is based on the Dijkstra’s algorithm [18]. The solution is updated by following the causality in a sequential
way; i.e., the solution is updated pointwise in the order that the solution is strictly increasing (decreasing); hence two essen-
tial ingredients are needed in the algorithm: an upwind difference scheme and a heap-sort algorithm. The resulting complex-
ity of the fast marching method is of order O(NlogN) for N grid points, where the logN factor comes from the heap-sort
algorithm. Recently, an O(N) implementation of the fast marching algorithm for solving Eikonal equations is developed in
[50]. The improvement is achieved by introducing the untidy priority queue, obtained via a quantization of the priorities
in the marching computation. However, the numerical solution obtained by this algorithm is not an exact solution to the
discrete system due to quantization. The extra error introduced must be controlled to be at the same order as the numerical
error of the discretization scheme. It is shown in [40] that the complexity of this algorithm is O(fnax/fminlV) in order to achieve
an accuracy that is independent of the variation of f{x). In the fast sweeping method [5,55,47,54,27,28,53,38,39,52], Gauss-
Seidel iterations with alternating orderings is combined with upwind finite differences. In contrast to the fast marching
method, the fast sweeping method follows the causality along characteristics in a parallel way; i.e., all characteristics are
divided into a finite number of groups according to their directions and each Gauss-Seidel iteration with a specific sweeping
ordering covers a group of characteristics simultaneously; no heap-sort is needed. The fast sweeping method is optimal in
the sense that a finite number of iterations is needed [54], so that the complexity of the algorithm is O(N) for a total of N grid
points, although the constant in the complexity depends on the equation. The algorithm is extremely simple to implement.
Moreover, the iterative framework is more flexible for general equations and high order methods.

The high order finite difference type fast sweeping method developed in [53] provides a quite general framework, and it is
easy to incorporate any order of accuracy and any type of numerical Hamiltonian into the framework. Much faster conver-
gence speed than that by the time-marching approach can be achieved. Due to the wide stencil of the high order finite dif-
ference approximation to the derivatives, some downwind information is used and the computational complexity of high
order finite difference type fast sweeping methods is slightly more than linear.

Discontinuous Galerkin (DG) methods, on the other hand, can achieve high order accuracy by using very compact stencil.
In this paper, we develop a second order fast sweeping method based on a DG local solver for an important class of static H-]
equations, namely the Eikonal equations. A very fast convergence speed is observed in the numerical experiments.

The DG method is a class of finite element methods, using discontinuous piecewise polynomials as approximations for
solutions and test functions. The main difference between the DG method and the finite difference or finite volume method
is that the former stores and solves for a complete polynomial in each cell, while the latter stores and solves for only one
piece of information (the point value for the finite difference scheme and the cell average for the finite volume scheme)
in each cell, and it must resort to a reconstruction or interpolation using a wide stencil of neighboring cells in order to
achieve higher order accuracy. The DG method was first designed as a method for solving hyperbolic conservation laws con-
taining only first order spatial derivatives, e.g. Reed and Hill [42] for solving linear equations, and Cockburn et al.
[12,11,10,13] for solving nonlinear equations. In recent years the DG method has also been extended to solve many other
nonlinear PDEs such as the convection- diffusion equations [14], KdV type dispersive wave equations [49], etc. Even though
the approximation spaces of the DG method consist of discontinuous functions, the DG method can also be used to approx-
imate continuous and even smooth solutions like in elliptic equations. The key point is that discontinuities at the cell bound-
ary are automatically controlled to be consistent with the approximation error inside the cell for a well designed DG method.
We refer to [15,2] for more details about DG methods.

There are mainly two types of DG methods for solving H-] equations. One was originally proposed in [24,23] which is
based on the observation that the gradient of the solution ¢ of the H-J equations satisfies a hyperbolic system. The DG meth-
od combined with a least squares procedure, is then applied to solve the system to get the gradient of ¢. The missing con-
stant in ¢ is further recovered through the original equation. This method is later reinterpreted and simplified in [30] by
using the piecewise curl-free solution space in DG method. In another recent work on DG method for H-] equation [9],
the solution ¢ is solved directly. This method is more desirable in the sense that the derived hyperbolic system for V¢ in
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[24,30] involves more unknown functions than the original scalar H-] equation which is solved directly in [9]. Moreover the
solutions of H-] equations generally are smoother than those of the conservations laws.

Based on the DG discretization in [9], in this paper, we develop a second order fast sweeping method for solving Eikonal
equations by incorporating the causality property of these equations into the DG local solver. The resulting local nonlinear
system in the Gauss-Seidel iterations is a simple quadratic system and can be solved explicitly. The compactness of the DG
method and the fast sweeping strategy lead to a very fast convergence of the new scheme for Eikonal equations. The rest of
the paper is organized as follows. The algorithm is developed in Section 2, and numerical examples are given in Section 3 to
demonstrate the accuracy and the fast convergence of the method. Concluding remarks are given in Section 4.

2. Numerical formulation

Let g = Vy¢ and H(q) = |q| — f(x),q € R?, then the characteristic equations of the Eikonal equation (1.1), (1.2) are

>'<=qu=%, @1
q=Vyf, (2.2)
b =Vip-x=q-V,H=[(x)>0. (2.3)

One can see that ¢ is increasing along the characteristics, which is an important component in the design of the efficient
methods for solving (1.1), (1.2).

One of the key ingredients in designing a fast sweeping method is to design a local solver, which expresses the value at
the standing mesh point in terms of its neighboring values, and (1) it is consistent with the causality of the PDE and is able to
deal with possible discontinuities in the derivatives, and (2) the resulting nonlinear equation can be solved efficiently during
the Gauss-Seidel iterations. The second order local solver developed in this paper is based on the second type discontinuous
Galerkin method [9] reviewed in the introduction. The main idea will be presented for the cases with rectangular meshes.

We start with a partition of Q= U1<,<L1<]<]Iij where I,’j =1I; x ]] and I = [Xi—1/2v Xi+1/2].]j = [yj,llz,y]ur]/z]. The centers of I,’,]j are
denoted by x; = (xl 12 +Xir12) and y; = (yj 12 +Yjs12)s and the lengths of I;, J; are denoted by AX;= X2 — Xj_1/2 and

AYj=Yjr12 — ¥j—1/2- In this paper, we take Ax, Ay; = h for simplicity of the presentation. We further define the piecewise
linear approximation space as

Vi = {v: vl € P(Iy), Vi j},

where P'(I;) is the set of linear polynomials on I;;. Following the idea of the method developed in [9], a numerical scheme for
(1.1) can be formulated as follows: find ¢, € V}, such that

J Al O P G T A A R G
+ oy /, 100] (3.3 ) wn (.37 dx + 0 / () (%53 ) wa (%, ) d

~ [ fxymiixydrdy, i, v, < V) (2.4)
Iy

Let us now explain the notations in (2.4). For the piecewise smooth function ¢, € V}, [¢,] denotes the jump of ¢;, across the
cell interface which is defined horizontally by [¢,](x, il ) = pp(xt :+y -) #n(x;,,-),Vi and vertically by
9l Yyeg) = DoY) = Oy ) Vi Here gy, p) = by, (g V), a3, Y) = Ol (Xiy,y)  for  yeJ, and
on(X, y+]) buly,,, (X, sz) Pu(%,Y:,) = ¢,1\, *,¥j.3) for x € I. oty ,000, 00t 4j, Olp,ij Are constants which only depend on the numer-

ical solutlons in the nelghbormg cells of I;; and they are one of the important components of the local solver. By properly
choosing these functions, we expect that the formulation (2.4) is not only accurate and stable, but also enforces the causality
of the Eikonal equation therefore making it possible to design an efficient fast sweeping algorithm for solving (1.1), (1.2).
The piecewise linear approximation ¢, can be written as ¢/, = &y + uX; + v;Yj, where ¢, uj;, v;; are the unknowns, and
X; =%%Y; =22 Note that ¢; is the cell average of ¢, over I
With the con51derat10n of the causality of the Eikonal equation (1.1), (1.2), we choose the constants o, o, orij, %, in the
formulation (2.4) as following:

max(0, i1/ (hfi1;)) when i1 < i
. bty < ¢ (2.5)
when  ¢i_1; > ¢iaj,
0 when d), 1j & ¢1+1_1=
oy — | (2.6)
min(0, ui.1;/(hfis1;)) when  ¢i1j> dinaj,
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) max(0,vij_1/(hfij-1)) when Gij1 < bijur;
oy = Y (2.7)
0 when  ¢ij_1 > diji1,
Sej = 0 . when (f)i.j—l < <{)iJ‘+1; 28)
min(0, vij1/(hfij1)) when  éij1 > ¢ijia,

where f;; = fix;y;). If we denote H, = {l and H, = {ff > one would notice that the constants o065, 0i¢,jj%,i aT€ approximations
of Hi(V¢y) and Hy(V¢y,) in the four nelghbormg cells of I;;, with min and max operations to enforce the consistency of the
causality. For instance when ¢;_1; < ¢i;1; and ¢ij_1 < ¢ij,1, that is when the information is propagating from the bottom-left
to the top-right in the neighborhood of the cell I we expect the causality consistency that
Hi(Vén)l, L, A Ui 1j/(hfi-1j) >0, Hz(V¢h)|, ~ Vij_1/(hfij_1) > O for the current numerical solution in neighboring cells I;_1;
and I;j_1. S0 if this holds, oy and ap, 5 will be non-zeros and the scheme (2.4) becomes

JA g A e ) L e AR A A7

= / fxy)wax.y)dxdy,  Vij, Ywy, € V;. (2.9)
I

In other words, the method reflects the fact that the solution is increasing along the characteristics.

Remark 2.1. The choices for oy ,0r4,0, and oy in this paper are different from those used in [9]. For any given (i), these
functions do not depend on ¢y, liy» and this is crucial in order to get a simple local solver for (2.4) which forms a building block
of the fast convergence algorithm, see Sections 2.1 and 3. On the other hand, it is indicated in [9, p. 400] that as long as oy; is
within O(h) perturbation of Hi(V¢n(xi_1/2,y;)) (similar argument goes to ;0 and o), the accuracy developed in [9] is
guaranteed by truncation error analysis and this is confirmed by numerical tests. Our choice of o065, o5 and o satisfies
such conditions therefore will maintain the accuracy results in [9].

If I N (0\I') is not empty for some (i,j), we modify (2.5)-(2.8) in this cell to carry out the outflow boundary condition. For
instance in the cell I;; where X is aligned with the domain boundary and I;; N I is empty, we take ;= 0. Similar adjustment
is made to oy ,00r 4, Ot jj.

For any given (i), by taking w, = 1.X;Y; on I; and wy, = 0 elsewhere, the DG formulation (2.4) can be converted from the
integral form to the following nonlinear algebraic system:

1/Ui2j+Vi2j+'))ij$ij+ﬂiju1j+;hijvij = Rij, (2.10)
12B;¢i + Lty = Raj, (2.11)
1225b + vy = R, (2.12)

where

1 1
By =—5 oy +oug), Ay =50+ o),

Vi = % — Otrjj + b — Ole i,
Ly = =30 + 305 — Olejj + Olpj,
Nyj = —30ejj + 30t 5 — Oty jj + Olyj

and
1/ - 1 - 1
Rij = h /1 Fx,y)dxdy — ot ( div1j — 5 Uiv1j ) + o i1 +olig
i
_ 1 - 1
— Ot | Diji1 — 5 Vigr )+ dij1 Vi ),
12 - 1 - 1
Ry = " | f(x,y)Xidxdy — 60,55 pir1j— iuiﬂj — 60| o1+ iui—lj — O jjlij1 + Opgjllij—1,
’
12 - 1 _ 1
R3j = ) Fx,y)Y;dxdy — 60u i ( ¢ij1 — SVijr1 | — 60y | Pij—1 + SVij-t | = OrVisrj + Vioty-
i

To solve the coupled nonlinear system (2.10)-(2.12) with 1 <i< 1,1 <j <J efficiently, we are going to propose a fast
sweeping method which uses block Gauss-Seidel iterations with alternating directions of sweepings. Based on the basic
steps of the fast sweeping methods in [47,54], we first need to define a local solver to compute ¢y, in I;; based on the DG dis-
cretization (2.10)-(2.12), provided that the solution in the remaining region is known.
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2.1. DG local solver

Note that ;474,04 73 in (2.10)-(2.12) are functions of o.,00,4,0 and oy defined in (2.5)-(2.8), which are independent
of ¢h|, In addition, Ry R, and Rs 5 in (2.10)-(2.12) are independent of qb,,|, These indicate that the system of Egs. (2.10)-
(2. 12) provides a local representation of (¢, u;;, v;) in terms of the unknown solution ¢n in the neighboring cells and the
source data. Moreover, (2.10)-(2.12) is quadratic with respect to (¢, U, vy)-

Given (iyj), let ¢“"W|, = d)"e‘” + uf*X; + vj*Y; denote the candidate for the update of the numerical solution ¢y in I;; and
Puly, = O+ UpX; + vk,Y denote the current numerlcal solution in any (k,l)th cell, then we compute ¢;*" according to the fol-
lowing formula

2 2 _
(g (Ve )+ g + By + 2v3e™ = Ry, (2.13)
12835 + Gui™ = Ry, (2.14)
122505 + nyvi™ = R (2.15)

Note that fy,2,7ii.Cij i R1i» Rz, R37 do not depend on the numerical solution in Iy, hence (2.13)-(2.15) defines a quadratic
system for (d)"e"" upev, view) which can be solved explicitly. We can also show that the parameters 7;,(;;,1;; are either all zero
or all positive. Smce the system (2.13)-(2.15) in principle can have none or two sets of solutions of (¢, uj*", vi"), we take
the following strategy to decide when to reject or to accept the candidates of (¢>"EW, upev, view) computed from (2.13)-(2.15),
based on the causality of the Eikonal equation

1. When y;;(;;,1;; are all zero, we will not update the solution in this cell.
2. When yy;,¢;;,1; are all positive, if we get from (2.13)-(2.15)

e two sets of real solutions (¢)"EW, upev, view): then update ¢h|, with ¢p®"| Iy if the following conditions are satisfied:

Hnew
y
AHnew
y
new
y
fnew

if oy > 0,

2.16
if pjj > 07 ( )

Y2 \YARR AR\
<
x

>0

and uFE <0 if o5 <0,
>0
<0

if a5 <0,

o

If both sets of the solutions satisfy the above conditions, choose the one with the smaller value of &ge‘”;
e two sets of complex solutions: we will not update the solution in this cell.

Remark 2.2. The strategy regarding accepting or rejecting the candidate solutions in (2.16) is to ensure the consistency of
the causality. For example, if we follow the discussion after the definition of o, to o, in (2.5)-(2.8) when the information is
propagating from the bottom-left to the top-right in the neighborhood of the cell I, we expect o;; > 0 and o > 0, therefore
we accept the candidate solution (g%, ufe", vie") which is consistent with the causality: ¢} > i 1, oJ" = bij1 as well
as ug®™ > 0,vi®™ > 0. That is, along the characteristic the solution is nondecreasing. Note that comparing average values in
cells does not necessarily give the correct information of the characteristics or monotonicity of the solution. That explains
why oscillations can occur (see Example 7 in Section 3) if the derivative criterion is not used, i.e., the average is monotone
even if the solution is not. However, the sign of derivatives become subtle near local extrema or shocks. So in (2.16) we use
both the cell average and the derivatives of the solution to decide the acceptance or the rejection of a candidate for the
solution update to ensure the causality consistency.

2.2. Hybrid DG local solver

With the local solver defined in the previous section as the building block, the numerical experiments show that the
straightforward application of the fast sweeping method as in [47,54] based on the DG discretization (2.4) may not produce
satisfactory results all the time. There are two issues that we need to pay more attention. The first is the initial data. In gen-
eral iterative methods for nonlinear problems need a good initial guess for convergence, in particular when they are based on
high order discretizations. On the other hand, the fast sweeping method based on the first order Godunov scheme has been
shown monotone, convergent and efficient for any initial data that are super-solution (or sub-solution) of the true viscosity
solution [54]. So we use the first order scheme to provide a good initial guess for our high order method just as in [53], see
Section 2.3 for the complete description.

The second issue is that we enforce a quite strong causality condition (2.16) when we update the value in a cell using the
local DG solver. Near shocks, where characteristics intersect, or near points where ¢, or ¢, are close to zero, causality issue
becomes more subtle. The local DG solver may not be able to provide a solution satisfying (2.16). Hence in those cells where
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the second order local DG solver can not provide a solution we switch back to a first order finite difference type Godunov
scheme. The hope is that more accurate information propagated through the DG solver will be felt at all points.

However, those conditions in (2.16) will enforce propagation of information in the right direction and this will signifi-
cantly reduce the number of iterations of our final algorithm in Section 2.4. For example, such conditions were not used
in [53] and more iterations are needed in general.

One concern for hybridizing the two local solvers is a possible reduction of the accuracy. In practice the first order local
solver is only used rarely as explained above. This phenomenon is observed in our numerical examples. Here we classify the
convergence of our method into three cases.

C1: The first order finite difference type local solver is never used.

C2: The first order finite difference type local solver is used before the iterations converge. By the time the iterations con-
verge, the first order local solver is not used.

C3: The first order finite difference type local solver is used in the whole process of the computation. By the time the
iterations converge, the first order local solver is used in certain cells and the solution is not further updated if
the iterations continue. The ratio between the number of the cells in which the first order local solver is used
and the number of the total cells is decreasing when h decreases, and the numerical evidence shows that this ratio
is about O(h).

Remark 2.3. Numerical examples show that in the case C3 described above, the first order local solver is used in O(h)
percentage of the total number of cells which are in the neighborhood of the shock location, i.e., where characteristics
intersect, and hence it does not pollute solutions in other region. Therefore the method still achieves second order accuracy
in the L' norm.

The hybrid local solver is defined as follows: given (i)

(1) When the DG local solver defined in the previous section provides an update in Ij;, the update is accepted.
(2) When the DG local solver defined in the previous section provides no update in Iy, the following finite difference based
local solver is used instead: let

a=min(¢i_1j, ¢iz14), b=min(dij1, dij).fij = f(%:,¥;),

we then update the solution in the cell I;; as the following:
e If|a—b| > fi;h, then

5" = min(a, b) + fi;h

and
upew = @iev — i1, Vi = 0 if a = min(a,b) = ¢i 1 < dis1j,
up" = dip1j — GV, Vi =0 if a =min(a,b) = <?>+1J < dis1j,
U;}EW — O7VII}EW _ new ¢1J 1 if b= l'l‘lin(a7 b) = (2)l < (Z)UJFL
upew = 0, vpew = <f>u+1 — ¢pew if b=min(a,b) = $ij1 < Pij1

e If |a — b| <fi;h, then
a+b+ /22" — (a—b)?
ij 5
and
Ui = { new - i 1y if ‘?)H-j < (E)iJrl_j-,
ij bicrj— L iy = iy,
yew _ { B = i1 if dijor < i,

ij " & if ¢ ¢
i bijer — PR if Pij1 > g

Tnew __

Remark 2.4. When the first order finite difference based local solver is used in this hybrid local solver, the way to com-
pute the update for ¢; is the same as that used in [54]; and the way to compute the updates for u; and v;; is based on how
the derivatives ¢, and ¢, in the Eikonal equation are approximated in the Godunov finite difference discretization as in
[54].
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2.3. Initial guess and boundary condition

In order to complete the fast sweeping algorithm based on the hybrid DG local solver defined above, we also need to spec-
ify how to impose the boundary conditions and how to set up the initial guess for the iteration.

To assign the boundary conditions, we pre-assign the solution in the boundary cells (certain cells around I", which will be
specified in Section 3 for each example), and the solution in these cells will not be updated during the iterations. In the
numerical experiments, the following approach is taken: for any I; which is identified as the boundary cell, ¢h|1ij e P! (Iy) is
the least squares fit of the exact solution ¢, satisfying

Ji(dn —¢) = min Jy(wy — ¢),

wyeP! (Iy)
where
2 2 2 2
B = (Wigy3) "+ (iggn) + (biggn)” + (Biagg)

and Vigja denotes ¥(Xi_3,¥;1)- One can easily derive the following explicit formula for computing this least squares fit
bnly, = by + uyXi + v;Y; from the exact solution ¢

- 1

bij = 1 (Qbif%_jf% + d’if%‘]#% + ¢i+%.j—% + ¢i+%j+%)> (2.17)
1

U = j <¢i+%.j—% — ¢i—%‘j—% + ¢,’+%J'+% - ¢i7%‘j+%>, (218)
1

Vi = 3 (¢i7%_j+% - ¢i7%_j7; + ¢i+%.j+§ - ¢i+%j—%)‘ (219)

This procedure provides second order accurate boundary conditions provided that ¢ is sufficiently smooth.

Remark 2.5. In real implementation the exact solution is known only along some curves or at some isolated points. One can
use (a) interpolation or extrapolation, or (b) ray tracing method, or (c) a first order approximation of the solution on a finer
mesh, in a neighborhood of the boundary I' to provide the second order boundary condition approximation. Then the
method developed here can be used to compute the solution efficiently in the whole domain.

Once the boundary condition is prescribed in the boundary cells, the initial guess of the numerical solution in the remain-
ing region is given as follows: we compute the first order Godunov finite difference based fast sweeping approximation ¢gp
[47,54] to ¢ with the unknowns defined at (xi,%,yj,%) for all (ij), then we take the least squares fit of ¢pp as the initial guess ¢p.
That is, ¢y is computed by replacing ¢ with ¢gp in (2.17)-(2.19). Note this initial guess is first order accurate.

2.4. Algorithm

Now by combining the hybrid DG local solver, the boundary condition treatment and the initial guess described in Sec-
tions 2.1-2.3 with the block Gauss Seidel iteration with alternating sweeping orderings, we can summarize the main algo-
rithm for solving (1.1), (1.2)

1. Initialization: in the cells around I', assign the least squares fit of the exact solution or approximation solution and the solu-
tion in these cells will not be updated in the iterations; in the remaining region, initialize the solution by the least squares
fit of the solution from the first order finite difference scheme, see Section 2.3.

2. Update ¢p, on Ij; by block Gauss Seidel iteration with four alternating sweeping orderings:

Mi=1:Lj=1:J=1)  @i=1:1j=1:J(=1),
Bli=1:1j=]:1(=ll) @i=1:Lj=]:1(=).

Solve d;h\;‘;w by the hybrid DG local solver defined in Section 2.2.
3. Convergence: 6> 0 is a given small number. For any sweep, if we denote the solutions before and after the sweep as ¢3¢
and ¢;®", and if

ll6p< = 211 ) < 9, (2.20)

the algorithm converges and stops.

Remark 2.6. The Gauss Seidel iteration we use is block Gauss Seidel as each time the numerical solution in I;; which contains
three unknowns, is considered for update.

Remark 2.7. We use L! norm in determining the convergence of the algorithm in (2.20) since this norm is commonly used in
analyzing hyperbolic problems, and it is less affected by the degeneracy in O(h) percentage of the total number of cells.
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3. Numerical examples

In this section, we demonstrate the performance of the algorithm defined in Section 2.4 through some typical two dimen-
sional examples, and § in the stopping criteria is taken as 10~'4. The numerical errors in L' norm, L? norm and L* norm are
presented. In order to make a fair comparison among these errors, the following normalization is used:

1/2
Wil = Jo, w(x,y)|dxdy ( Jo W(x,y)[Pdxdy
e~ 01 HWHLZ(QC) =\ o1 )
€2 ||

where Q. is the domain in which the errors are computed, and |2, denotes the area of .. We also report which situation
among C1, C2 and C3 described in Section 2.2 happens for each example. In all tables, # stands for the number of sweeps
needed for the convergence, and it does not include the sweep in which the convergence is noticed. For those examples
whose exact solutions are known, boundary conditions are given by the least squares fit of the exact solutions as described
in Section 2.3.

Example 1. Q=[-1,1]% I"={(0,0)} and f(x,y) = 1. The exact solution

d(X,y) = VX2 +y?

is the distance function from I, and all the characteristics start from the origin and propagate outward along all directions.
Note the origin I' is a singularity.

We pre-assign the boundary conditions in a 0.2-length square box around I" in which the solution is not updated during
iterations. This is the so-called wrapping technique [53,39] which is used in order to correctly measure the order of accuracy
for the point source problem. The numerical errors and convergence orders are computed in the domain without the 0.2-
length box around I" and the results are reported in Table 3.1. The same table also includes the number of sweeps needed for
the convergence, and indicates which situation among C1, C2 and C3 described in Section 2.2 happens in the computation.
The results show that the finite difference based local solver is never used through the whole computation (except when
n =20), and the proposed scheme is second order accurate. Only four sweeps are needed for the convergence.

As a comparison, in Table 3.2 we include the results by the first order Godunov finite difference based fast sweeping
method [54]. One can see that our proposed algorithm provides more accurate approximations. Since the second order local
solver is more expensive than the first order local solver in one cell, we further examine the efficiency of these two methods
by studying the relation between the number of the involved x,/, and |/ operations and the accuracy of the method. We
assume the dominating computational cost is in the iterations (including the iterations in order to get the first order initial
guess), therefore we choose not to count the operations related to pre-processing and post-processing the data to simplify
the comparison. Note that both methods need the same number of sweeps for the iterations to converge in this example. In
Fig. 3.1 we plot the operations per sweep versus the L! errors in ¢. The operations in initializing the proposed algorithm using
the first order method has also been taken into account. It shows that in order to achieve a relatively low accuracy (lower
than 1072 in L' error for this example), the first order scheme needs fewer operations than the second order algorithm
proposed here. But in order to achieve a better accuracy (higher than 5 x 103 in L' error for this example), the second order
algorithm needs fewer operations than the first order algorithm, and the higher the accuracy we want to achieve, the more
efficient our DG algorithm is compared to the fist order method. We want to point out that the results in Tables 3.1 and 3.2
are computed in different ways. If we take the error in L! norm as an example, the errors in Table 3.1 for the DG
approximation ¢y by the proposed algorithm are computed as follows:

]
9= dnlloa = D0 [ 19(x) = dn(xy)laxdy.
i=1 j=1 /I
where [11 |p(x,¥) — ¢n(x,y)|dxdy is further approximated by Gaussian quadrature which is exact for polynomials of degree at
most 5. For the numerical solution ¢ resulted from the Godunov finite difference based fast sweeping method, we only
know its values at the grid points (x;_1,2,yj_1/2), therefore the errors in Table 3.2 are computed by

Table 3.1

Example 1. I" = {(0,0)} and f(x,y) =1

n L' error Order L? error Order L* error Order # Type
20 5.08E-02 - 7.74E-02 - 2.74E-01 - 4 Cc2
40 4.28E-03 3.57 8.85E-03 3.13 5.02E-02 244 4 C1
80 4.14E-04 3.37 1.06E-03 3.07 9.28E-03 244 4 C1

160 5.93E-05 2.80 1.56E-04 2.76 1.99E-03 2.22 4 C1

320 1.04E-05 2.51 2.60E-05 2.59 4.62E-04 2.11 4 C1

The boundary condition is pre-assigned in the 0.2-length square box around I', and the errors are computed outside the box. n=2/h.
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Table 3.2

Example 1. I' = {(0,0)} and flx,y) =1

n L! error Order L? error Order L™ error Order #
20 3.33E-02 - 3.86E-02 - 6.81E-02 - 4
40 1.86E-02 0.84 2.15E-02 0.85 3.79E-02 0.84 4
80 9.90E-03 0.91 1.14E-02 0.91 2.02E-02 0.91 4

160 5.12E-03 0.95 5.89E-03 0.95 1.04E-02 0.96 4

320 2.60E-03 0.98 2.99E-03 0.98 5.23E-03 0.99 4

The boundary condition is pre-assigned in the 0.2-length square box around I'". The computation is by the first order Godunov finite difference fast sweeping
method. n=2/h.

10_1 T T T
——DG solver
—e—FD solver
1072 | 4
S
T 100} 4
!
107 4
10°° N Ll Ll L .
10° 10* 10° 108 107

Operations per sweep
Fig. 3.1. Example 1. Operations count, %, per sweep versus the L' errors in ¢. The operations per sweep when the first order finite difference solver is used:
% = Cyn?; the operations per sweep when the second order DG solver is used (including obtaining the first order initial guess): ¥ = (C; + C,)n?. Here

C; = 6,C, = 76 are the operations involved per element by the first order finite difference local solver and the DG local solver respectively. “O” and “+” along
the curves are for different n with n =20,40,80,160,320 from left to right. Operations including *. /, /- are counted without + and —.

16 — ¢nllp ) ~ Z )

I
i=1 j

J
[p(Xi-1/2,Yj-12) — Pn(Xic1y2,Yjo1,2)|AXiAY;.
=

This note also applies to Examples 4 and 6 when similar comparison is made.

Example 2. Q=[-1,1]% I'={(0,0)}, and

fx,y) = g \/sin2 (gx) + sin® <§y>

The exact solution is

¢(x,y) = —cos (gx) —Cos (gy>

Though the solution is smooth, f{0,0) = 0 indicates that the equation is degenerate at the origin, i.e., the propagating speed is
infinity.

In the computation, the boundary condition is pre-assigned either in a fixed region around I" (0.2 x 0.2 square box) or in a
fixed number of cells around I" (4h x 4h square box). The results collected in Table 3.3 show that four sweeps are needed for
the convergence and the second order convergence rate is achieved. The slightly lower convergence orders observed in the
second part of Table 3.3, when only a region of size O(h) is taken out near the source, is due to the degeneracy of the Eikonal
equation (f{0,0) = 0 for this example) or the singularity of the solution at source point. Any numerical scheme will create
larger errors near the singularity and the error incurred near the source point will propagate to and pollute the computation
domain [54,53,39]. For this example the finite difference type local solver is used before the iterations converge and it is
never used afterward, i.e. case 2 as discussed in Section 2.2.
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Table 3.3
Example 2. The exact solution is ¢(x,y) = —cos(%x) — cos(3y) on [-1,1 ]? with I" = {(0,0)}
n L' error Order 2 error Order L> error Order # Type
L=02
20 7.00E-03 - 1.29E-02 - 6.48E-02 - 4 C1
40 7.83E-04 3.16 1.53E-03 3.08 1.23E-02 2.40 4 c2
80 1.56E-04 2.33 2.78E-04 2.46 2.96E-03 2.05 4 c2
160 3.38E-05 2.20 5.54E-05 2.33 7.34E-04 2.01 4 c2
320 7.73E-06 213 1.17E-05 224 1.83E-04 2.00 4 c2
L=4h
20 2.10E-03 - 3.73E-03 2.64E-02 - 4 C1
40 7.83E-04 1.43 1.53E-03 1.29 1.23E-02 1.11 4 c2
80 2.95E-04 1.41 5.75E-04 1.41 5.10E-03 1.26 4 c2
160 1.01E-04 1.54 1.98E-04 1.54 1.98E-03 1.37 4 c2
320 3.23E-05 1.65 6.34E-05 1.64 7.27E-04 1.45 4 c2

The boundary condition is pre-assigned in the L-length square box around I'. n = 2/h.

Table 3.4
Example 2. Convergence of the gradient of ¢, to V¢
n L' error Order L? error Order L error Order
L=02

20 1.36E-01 - 1.47E-01 - 4.54E-01 -

40 5.21E-02 1.38 5.42E-02 1.44 2.11E-01 1.11

80 2.41E-02 1.11 2.40E-02 1.18 1.06E-01 0.99
160 1.16E-02 1.05 1.12E-02 1.10 5.29E-02 1.00
320 5.68E-03 1.03 5.38E-03 1.06 2.65E-02 1.00
L=4h

20 1.02E-01 - 1.03E-01 3.36E-01 -

40 5.21E-02 0.97 5.42E-02 0.92 2.11E-01 0.67

80 2.59E-02 1.01 2.75E-02 0.98 1.27E-01 0.73
160 1.27E-02 1.03 1.36E-02 1.02 7.41E-02 0.78
320 6.19E-03 1.04 6.56E-03 1.05 4.24E-02 0.81
The exact solution is ¢(x,y) = —cos(5x) — cos(3y) on [-1,1 ]2 with I" = {(0,0)}. The boundary condition is pre-assigned in the L-length square box around I".
n=2/h.

Since our proposed algorithm is second order accurate and ¢ in each element is a polynomial function, the piecewise
defined gradient of ¢, naturally provides a first order approximation for the gradient of the exact solution ¢, see Table 3.4.

Example 3. Q=[—1,1]% I is a circle with the center (0,0) and the radius R, = 0.5, and f(x,y) = 1. The exact solution

d(x,y) = [V*¥* +y? — K|

is the distance function from I.

The boundary condition is pre-assigned in the 2v/2h-distanced cells from I'. The errors, convergence orders and the
number of sweeps needed for convergence are included in Table 3.5. For this example, the boundary I" is smooth and
separates the interior and exterior regions. The origin (0,0) is the only singularity of the solution. The full second order
convergence rate can be seen only when the errors are measured away from the origin. Four sweeps are needed for the
convergence. The first order finite difference based local solver is used before the convergence is achieved when n = 160,320,
and it is never used afterward.

Example 4. Q=[-1,1]% and I consists of two circles with centers (0.5,0.5),(—0.5,—0.5) and the radius R, = 0.3, and f{x,y) = 1.
The exact solution is

$(x,y) = min <|\/(x — 050 + (v~ 05)° —RyJ, [/ (x + 0.57 + (y + 0.5 R5|),
which is the distance function from I

For this example, the centers of two circles and {(x,y): x+y=0}, the equally distanced line from the two circles I" are
singularities, i.e., where characteristics intersect. In the computation, the boundary condition is pre-assigned in the 2+v/2h-
distanced cells from I'. The errors, convergence orders and the number of sweeps needed for convergence are included in
Table 3.6. Not like in all the previous examples, the first order finite difference local solver is used all the way till the
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Table 3.5
Example 3. I' is a circle centered at (0,0) with radius 0.5. f(x,y) = 1
n L error Order 2 error Order L> error Order # Type
Global error
20 1.07E-03 - 1.73E-03 - 1.73E-02 - 4 C1
40 2.94E-04 1.86 4.65E-04 1.90 8.12E-03 1.09 4 C1
80 7.68E-05 1.93 1.26E-04 1.89 4.03E-03 1.01 4 C1
160 1.98E-05 1.96 3.41E-05 1.88 2.01E-03 1.00 4 c2
320 5.06E-06 1.97 9.22E-06 1.89 1.01E-03 1.00 4 Cc2

Regional error

20 9.51E-04 - 1.33E-03 - 7.57E-03 - 4 C1
40 2.75E-04 1.79 3.80E-04 1.81 3.88E-03 0.96 4 C1
80 7.18E-05 1.94 9.81E-05 895 9.29E-04 2.06 4 C1
160 1.84E-05 1.96 2.55E-05 1.94 2.35E-04 1.98 4 c2
320 4.69E-06 1.97 6.55E-06 1.96 5.97E-05 1.98 4 Cc2

The boundary condition is pre-assigned in the cells within 2v/2h-distance from I'. Global error: errors computed outside the boundary condition region;
regional error: errors computed outside the boundary condition region and outside the 0.1-length box around the origin. n = 2/h.

Table 3.6
Example 4. I' consists of two circles with centers (0.5,0.5), (—0.5,—0.5) and the radius Ry = 0.3. f(x,y) = 1
n L' error Order L? error Order L error Order # Type +
Global error
20 2.75E-03 - 6.80E-03 - 7.20E-02 - 6 c3 1.000%
40 6.59E-04 2.06 1.97E-03 1.79 3.66E-02 0.98 6 c3 1.250%
80 1.63E-04 2.02 6.30E-04 1.64 1.84E-02 0.99 6 c3 0.438%
160 4.08E-05 2.00 2.11E-04 1.58 9.25E-03 0.99 6 c3 0.250%
320 1.03E-05 1.99 7.26E-05 1.54 4.63E-03 1.00 6 c3 0.137%
Regional error
20 9.74E-04 - 1.14E-03 - 3.16E-03 - 6 c3 1.000%
40 3.49E-04 1.48 4.74E-04 1.27 3.84E-03 - 6 c3 1.250%
80 9.09E-05 1.94 1.24E-04 1.93 9.31E-04 2.04 6 c3 0.438%
160 2.33E-05 1.96 3.23E-05 1.94 2.37E-04 1.97 6 c3 0.250%
320 5.90E-06 1.98 8.29E-06 1.96 6.03E-05 1.97 6 c3 0.137%

The boundary condition is pre-assigned in the cells within 2v/2h-distance from I'. Global error: errors computed outside the boundary condition region;
regional error: errors computed in the cells 2v/2h distance away from the equally distanced line from the circles, 0.1 distance away from the circle centers,
and outside the boundary condition region. 1 = the percentage of the cells in which the finite difference type local solver is used by the time the iterations
converge. n=2/h.

iterations converge. When the convergence is achieved, the first order local solver is used in some cells along the equally
distanced line {(x,y):x +y = 0} where characteristics intersect. See Fig. 3.2. However, the number of cells in which the first
order finite difference local solver is used is no more than O(h) percentage of the total number of cells. This explains the
second order global convergence rate in L' norm and first order global convergence rate in L. On the other hand, the full
second order convergence rate can be seen when the errors are measured away from the centers of the two circles, and the
equally distanced line from these two circles. It is interesting to note that the singularities at the centers of the two circles are
quite different from the singularities at the equal distance line. At the centers infinite many characteristics from all directions
intersect. On the other hand, the characteristics only intersect pairwise at the equal distance line. So we have an extra
difficulty to resolve infinite many directions of characteristics at the centers. Similar to the point source scenario, a fixed
region has to be taken out near the circle centers to see second order convergence, while only a O(h) neighborhood of the
equal distance line needs to be taken out. Although the characteristics in this example are straight lines, six sweeps are
needed for convergence to machine zero instead of four sweeps due to the presence of shocks. Closer examination shows
that by the end of the fourth sweep, the solution is settled everywhere except in a few cells near the shock location. Such
cells are among those which eventually involve the first order local solver when the convergence is achieved, see Fig. 3.2.
Similar phenomenon occurs for the first order monotone scheme although the accuracy has already been achieved after four
iterations, i.e., the modifications to balance information from different characteristics near shocks after four iterations are
really small compared to the approximation error of the discretization scheme. This is discussed in [54].

Compared to the results in Table 3.7 using first order scheme [54], we see that the global L* error is comparable. This is
due to the fact that the first order local solver is used in certain cells, e.g., near the shocks. As shown by a constructed
example in [54], at most first order accuracy can be achieved in L>° norm at the shock location. However, for the integral L! or
L? norm we see a higher order of convergence and much smaller error than the first order scheme even including those
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